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Uncertainty Quantification — Definition

- 0.000 bladder

. _Increasmg use of ML in _mecﬁcal 1 1  oos0 fermurien
images analysis (classification, |
] - 0.000 femur-right
segmentation)
B - 0000 heart

« Despite good performances, lack
of interpretability and capacity to
anticipate failure predictions -

- - o0.000 kidney-left

A o - 0.000 kidney-right

poor adoption in clinical practice - 0000 [iver
1\ (S| S . -1 1.000 lung-left
 Failures prediction = help 0 e S ™ . 0.000 lung-right
increasing confidence in ML algo ™ G50 panEas
usage

-~ 0.000 spleen

LITO



Uncertainty Quantification — Definition

» Already a lot of methods
proposed

* |ntrinsic vs Post-Hoc

* Posthoc Uncertainty
Quantification : Methods to
predict algorithm failures with no
model alteration

I I I O Lambert et al., ‘Trustworthy Clinical Al Solutions’.

Test-Time
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Learned models
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MedMNIST - Classification use cases

* OrganAMNIST: 11-class classification of 58830

Count of Labels

Label 0 Label 1
Labels

BreastMNIST: binary classification of 780

organs CT sections (28x28 pixels) US sections of breast tumors (28x28 pixels),
* Resnet18 training — 5X cross validation malignant vs normal, benign

(train/val: 55% calibration: 15% test: 30%)

Resnet18 training — 5X cross validation

(train/val: 55% calibration: 15% test: 30%)

LI IO https://medmnist.com/v2



https://medmnist.com/v2

Resnet18 results
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Max Softmax Response (MSR) — Distance to hard labels (DHL)

Direct use of model output
(softmax for multiclass or
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Max Softmax Response (MSR) — Distance to Hard Labels (DHL)

Max Softmax Response Distance to Hard Labels

0.8 i 0.5 T o
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MSR — DHL after Recalibration using calibration set

Temperature scaling of Resnet
output (softmax for multiclass or

% Calibration
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ResNet 18 Softmax output  Scaling model trained
FeatureMaps

on calibration dataset
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Before vs After model calibration

LITO

Accuracy (Fraction Correct)

Accuracy (Fraction Correct)
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MSR — DHL after temperature scaling

MSR after temperature scaling

1-max(prob)
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Ensembling (Ens)

Standard deviation of models output (softmax for multiclass —
sigmoid for binary classification)

Class 1 2 3 4 5 6 7 8 9 10 11 0.200
HQ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 000 0.00 0.00 0.175
0.150 -
ﬂﬂ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.125
Dﬂ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.100 -
DQ 0.00 0.00 000 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.075
HHHQ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.050 -
Std 000 000 000 000 000 0.00 0.00 0.00 0.00 0.00 0.00 0.025 -
Test instance Models from CV 0.000

Mean std dev ensembling
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Ensembling SD

Ensembling Results
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Test Time Augmentation (TTA)

Standard deviation of predictions after random augmentations
(softmax for multiclass — sigmoid for binary classification)

Class 1 2 3 4 5 6 7 8 9 10 M1 0.200
0.00 0.00 0.00 0.00 0.00 0.00 000 1.00 0.00 0.00 0.00 0.175 A
0.150 A
0.00 0.00 0.00 0.00 0.00 0.00 000 1.00 0.00 0.00 0.00
0.125 A
0.00 000 0.00 082 0.01 0.01 0.06 0.08 0.01 0.00 o0.00
0.100 A
0.00 000 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 o0.00 0.075 A
0.00 000 0.00 0.00 000 0.00 0.00 1.00 0.00 0.00 o0.00 0.0501
0.025 A
Test instance 0,000
RandAugment Std o000 000 000 045 000 0.00 002 047 0.00 0.00 0.00 : Mean std dev TTA
(n=5)
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Test Time Augmentation (TTA)

std

TTA
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Greedy Policy Search (GPS)

Standard deviation of predictions after learned augmentations using a
calibration dataset (softmax for multiclass — sigmoid for binary classification)

Class 1 2 3 4 5 6 7 8 9 10 M1 0.200
0.00 0.00 0.00 0.00 0.00 0.00 000 1.00 0.00 0.00 0.00 0.175 A
0.150 1
0.00 0.00 0.00 0.00 0.00 0.00 000 1.00 0.00 0.00 0.00
0.125 A
0.00 0.00 0.00 0.82 0.01 001 006 0.08 0.01 0.00 o0.00
0.100 1
. . 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.075 A
Calibration
dataset 0.050
0.00 0.00 0.00 0.00 0.00 0.00 o0.00 1.00 0.00 0.00 0.00
0.025 4
Test instance
0.000 -

0.00 0.00 0.00 0.45 0.00 0.00 0.02 047 0.00 0.00 0.00
Std Mean std dev TTA

»lll» a —Tg

Random Model Augmentations
transformations maximizing UQ
generation performances
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Greedy Policy Search (GPS)

GPS
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Distance to KNN in latent space (KNNall)

Nearest kneighbors
distance with training
data in latent space

Latent space Mean 5NN Dist

Training dataset

L— -
N L

Test instance As e
' o
ResNet 18
FeatureMaps

\ 4

PCA dimension reduction with
0.8 explained variability (from

512 - ndim
) Projection of test instance and train data

into reduced latent space. Computation
of mean distance with 5 training data NN

LITO
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Distance to KNN in latent space (KNNall)

KNNall

KNN distances
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Distance to KNN in latent space after features selection (KNNshap)

Nearest kneighbors
distance with training
data in latent space
after class-features
selection using Shap
values

LITO

Test vs Class Mean 5NN Dist
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' ' ,1 . .

J - . o e SRR S

! ' : l ‘ " . '"'.’.;,t"' e

Test instance .
FeatureMaps : ‘

1%
dataset SHAP Projection of train set and test
instance in reduced important latent
.Impqutanjt features J space for predicted class (PCA) +
identification / class Computation of mean distance with 5
training data NN




Distance to KNN in latent space after features selection (KNNshap)

KNN distances with SHAP KNN distances with SHAP
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UMAP latent space examples

UMAP projection of the latent space
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Methods combination (Mean, Max, Min, Perceptron)

DHL / MSR ‘ DHL/7MSR
SD model SD mod(_al
ensembling ensembling
Mean / Max / Min 3D GPS _I_ — UQ score
SD GPS ]
UQ score

Zscore to scale UQ methods + Perceptron trained on
mean / max / min ensembling calibration data

Softmax/Sigmoid output Y
Models outputs N
Train data N
N
N

<

Calibration data

Z
Zz2 Zz2 Z2 < <
Zz2 Z2 Z2 Z <
ZzZ <X Z2 Zz <
< z < z <
< < < z <

z

Final layer access
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Methods combination (Mean,

Max, Min)

OrganAMNIST

Mean Comb
(AUC=0.98)

Max Comb
(AUC=0.98)

Min Comb
(AUC=0.94)

LITO

UQ methods combination

124

o
o

@

(UQ metrics))
e

Mean(Zscore!
B

@ @O ©° o o

BreastMNIST

Mean Comb
(AUC=0.63)

B
o

30

re(UQ metrics))

20

@ @O © o ©°

Max Comb
(AUC=0.6)

UQ methods combination

Min Comb
(AUC=0.79)

cccccc

Category

ore(UQ metrics))
I
o
tn
sy

z

£
s

0.6 1

(UQ metrics))

Mean(Zscore

—0.56

0.60 -

—0.62

UQ methods combination

0.4 1

0.2 1

0.01

e =
n
N

v}
0
—0.58 1

T
cccccc

Category

30



Methods combination (Perceptron)

UQ methods combination UQ methods combination
] o]
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UQ methods comparison and combination

Combination = as good/better
than best UQ method. Ensure
maximum performances ? -
Tbc on other use cases

AUC not necessarily best metric
to evaluate UQ - if 0% error
rate needed, very high AUC can
still lead to poor/zero sensitivity

LITO

True Positive Rate

True Positive Rate

ROC Curve for UQ methods
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UQ method comparison and combination

UQ methods | | MSR / DHL | Temp scaling output | Ensembling | TTA | GPS | KNNall | KNNshap Mean | Max| Min | Perceptron
AUC 0.73 0.68 0.77 064  0.73 0.61 0.6 0.63 06 079 0.72
breastMNIST  bAcc 0.69 0.67 0.78 064  0.71 0.64 0.63 063 063 0.79 0.72
bAcc Spec 0.57 0.86 0.86 043  0.64 0.86 0.43 036 043 0.79 0.86
Sens 0.8 0.48 0.7 085  0.77 0.42 0.83 0.9 083 0.79 0.58
AUC 0.73 0.68 0.77 064  0.73 0.61 0.6 0.63 06 079 0.72
breastMNIST  bAcc 0.59 0.65 0.6 055  0.64 0.52 0.57 0.61 057  0.61 0.64
spec Spec 1 1 1 1 1 1 1 1 1 1 1
Sens 0.18 0.3 0.2 009  0.27 0.05 0.14 0.21 0.14  0.21 0.27

uQ methods|
AUC 0.94 0.94 0.93 076 093 0.91 0.98 098 098 094 0.97
organAMNIST  bAcc 0.88 0.88 0.87 071  0.87 0.86 0.95 095 095 088 0.94
bAcc Spec 0.9 0.9 0.92 0.91 0.9 0.91 0.98 098 098 091 0.99
Sens 0.87 0.87 0.83 051 085 0.8 0.91 091 091 085 0.89
AUC 0.94 0.94 0.93 076 093 0.91 0.98 098 098 094 0.97
organAMNIST ~ bAcc 0.54 0.57 0.5 0.5 0.5 0.69 0.5 0.5 05 057 0.92
spec Spec 1 1 1 1 1 1 1 1 1 1 1
Sens 0.09 0.14 0 0 0 0.38 0 0 0 0.14 0.83

LITO

37



New applications and use cases

Binary Multiclass Segmentation Regression
classification classification

MSR / Temp
scaling
TTA/ GPS \/ \/
Ensembling
models
variability V V
Distance to
boundary latent
space / KNN V V
Use cases BI-RADS shape = MedMNIST
classification
MedMNIST

LITO

Needs to be adapted
(one distance/voxel) -->
heatmap ?

Needs to be adapted
(one distance/voxel) -->
heatmap ?

Needs to be adapted
(one distance/voxel) -->
heatmap ?

May be difficult because
of skip connexions -->
use of VAE

BI-RADS segmentation
MSD decathlon

L X

v/

Needs to be adapted (no
discrete boundaries) -->
distance to train distribution ?

Use cases to be found
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